Mezclar bebidas energéticas y alcohol durante la adolescencia perjudica la función cerebral

Bebidas energéticas y alcohol, una mezcla peligrosa para el cerebro adolescente | Salud

Resumen

En las últimas décadas, el consumo de bebidas energéticas ha aumentado drásticamente, especialmente entre jóvenes, adolescentes y deportistas, impulsado por la búsqueda constante de efectos ergogénicos, como el aumento del rendimiento físico y cognitivo. Paralelamente, el consumo mixto de bebidas energéticas y etanol, bajo la modalidad de Binge Drink, ha crecido de manera similar entre los adolescentes. Sin embargo, poco se sabe si el consumo combinado de estas bebidas, durante la adolescencia, puede tener efectos a largo plazo sobre la función central, lo que plantea la cuestión de los riesgos de este hábito sobre la maduración cerebral. Biggio,etc.al.,(https://doi.org/10.1016/j.neuropharm.2024.109993)  diseñaron este estudio para evaluar, mediante enfoques conductuales, electrofisiológicos y moleculares, los efectos a largo plazo sobre la plasticidad del hipocampo del etanol (EtOH), las bebidas energéticas (ED) o el alcohol mezclado con bebidas energéticas (AMED) en un modelo de binge-drink en ratas. . Los resultados muestran que la administración compulsiva de AMED produce cambios adaptativos en el hipocampo a nivel molecular, asociados a alteraciones electrofisiológicas y de comportamiento, que se desarrollan durante la adolescencia y aún son detectables en animales adultos. En general, el estudio indica que la exposición de los adolescentes a AMED al consumo excesivo de alcohol representa un hábito que puede afectar permanentemente la plasticidad del hipocampo.



En Detalle

Los datos epidemiológicos indican un aumento en el consumo de alcohol (EtOH) entre los adolescentes, que va desde un consumo bajo a intenso y un abuso patológico (Gutiérrez y Sher, 2015; Lees et al., 2020). Además, los consumidores jóvenes concentran su consumo de bebidas alcohólicas en un marco temporal muy restringido con un fenómeno conocido como binge drinking (Chung et al., 2018). Por lo tanto, el consumo excesivo de alcohol en adolescentes consumidores de EtOH representa un importante factor de riesgo para la salud (Hill et al., 2000; Mokdad et al., 2016), que necesita estrategias de prevención eficaces (Hawkins et al., 1992; Toumbourou et al., 2019) .

=> Recibir por Whatsapp las noticias destacadas

Además, el consumo de EtOH a menudo se asocia con la ingesta de bebidas energéticas (DE) similares a los refrescos pero caracterizadas por altas concentraciones de estimulantes como la cafeína con ingredientes adicionales (taurina y vitaminas). Los DE se han vuelto muy populares debido a los efectos publicitados que tienen un atractivo particular para los usuarios jóvenes. De hecho, además del sabor agradable, los fabricantes afirman que estas bebidas pueden tener varias acciones «positivas», que incluyen aumento de la energía física, la concentración, el rendimiento deportivo, el metabolismo, la actividad mental y el estado de alerta (Vercammen et al., 2019; Verster et al. , 2012, 2015). Los adultos jóvenes, pero especialmente muchos estudiantes adolescentes, beben cantidades significativas de ED, con la expectativa de que mejoren su concentración y rendimiento cognitivo (Smit y Rogers, 2000; Specterman et al., 2005), les ayuden a mantenerse despiertos y reduzcan el cansancio físico , supuestamente impulsados ​​a beber ED con la expectativa de contrarrestar los efectos del estrés diario relacionado con los compromisos de estudio (Mahoney et al., 2019). A partir de los análisis de datos informados en varios estudios, no está claro si el consumo de DE asociados con EtOH es beneficioso o perjudicial para la función cerebral (Alsunni, 2015; Arria et al., 2011; Brunborg et al., 2022; Cadoni y Peana, 2023; De Giorgi et al., 2022); De hecho, importantes factores de riesgo para el consumo de EtOH durante la adolescencia podrían estar representados por su asociación con una bebida energética (ED), es decir, alcohol mezclado con ED (AMED) (Acquas et al., 2023; Sefen et al., 2022). Es plausible pensar que algunas de las sustancias contenidas en los DE, como la cafeína y la taurina, que pueden influir por sí solas en el sistema de recompensa del cerebro (Vargiu et al., 2021), también pueden contribuir a la alteración de la sensibilidad al EtOH al influir en el sistema de recompensa cerebral y aumentar el riesgo de consumo nocivo de alcohol (Dazzi et al., 2024; Hsu et al., 2009; Lubman et al., 2007; Yasuma et al., 2021). Varias pruebas experimentales sugieren que la combinación de EtOH y cafeína durante la adolescencia puede aumentar el potencial de abuso de EtOH (Arria et al., 2011; O’Brien et al., 2008; Peacock et al., 2012; Thombs et al., 2011 ), pero se sabe muy poco sobre el impacto del consumo de AMED.

La adolescencia es un período de desarrollo caracterizado por la maduración cognitiva, emocional y neurobiológica (Dahl, 2004), y el factor neurotrófico derivado del cerebro (BDNF, por sus siglas en inglés) de neurotrofina desempeña un papel crucial en estos procesos (Cohen-Cory et al., 2010). La adolescencia también se caracteriza por la toma de decisiones altamente riesgosas y una mayor vulnerabilidad al abuso de alcohol (Crews et al., 2007). El impacto del consumo excesivo de alcohol entre los adolescentes se ha estudiado ampliamente en modelos con roedores. Varios estudios demostraron que dichas exposiciones tempranas al EtOH causan deterioro de la función cognitiva y la flexibilidad, aumento de la ansiedad social, desinhibición conductual e impulsividad (Beaudet et al., 2016; Coleman et al., 2011, 2014), que persisten hasta la edad adulta. Además, la exposición repetida al EtOH durante la adolescencia también aumenta la motivación para su consumo (Spear, 2018) y parece que los cambios en el BDNF son evidentes después de que el adolescente consume alcohol de forma habitual (Cutuli y Sampedro-Piquero, 2022). A medida que el cerebro adolescente experimenta una maduración neurológica significativa, el consumo de EtOH durante este período crítico tiene el potencial de interferir con el desarrollo normal y producir cambios neurológicos persistentes y déficits funcionales (Spear, 2000, 2018). Si bien hay evidencia clínica disponible sobre las consecuencias conductuales y funcionales de AMED (Roemer y Stockwell, 2017), y a pesar de la necesidad imperiosa de comprender mejor los costos en salud y diseñar estrategias preventivas para reducir los resultados negativos de este hábito adolescente, la mayoría de los estudios preclínicos se centró en el uso de altas dosis de EtOH y cafeína (Fritz et al., 2014) como modelo para caracterizar el impacto del consumo excesivo de alcohol de AMED en adolescentes en la edad adulta, sin tener en cuenta el consumo combinado de un DE completo (con todos sus ingredientes farmacológicamente activos) con una bebida a base de EtOH, especialmente en la adolescencia.

Para proporcionar un trasfondo traslacional aún faltante para una mejor comprensión de las consecuencias del consumo excesivo de alcohol en los TCA (es decir, AMED), con especial atención a la transición de la adolescencia a la edad adulta, en este estudio utilizamos un enfoque multidisciplinario para investigar si en la adolescencia temprana la administración de EtOH, ED o AMED en forma compulsiva tiene un impacto en la función cerebral de ratas jóvenes y adultas. En este sentido, un estudio anterior informó que el consumo combinado de ED, EtOH o AMED bajo la administración  en forma compulsiva tiene efectos perjudiciales duraderos en la corteza prefrontal (Dazzi et al., 2024).

Para imitar una situación cercana a la real en adolescentes humanos que consumen cantidades moderadas de EtOH (Eckardt et al., 1998), los investigadores optaron por administrar, como lo hicieron en su estudio anterior (Dazzi et al., 2024), a cada animal, en cada sesión de tratamiento, con una cantidad de EtOH que corresponde a 1,5-2 tragos que contienen aproximadamente 12 g de EtOH (Eckardt et al., 1998; Kalant, 1975), para determinar más a fondo si dicho protocolo de consumo excesivo de alcohol de los adolescentes AMED la administración podría afectar el cerebro ya sea en la edad adulta y en la adolescencia, un período crítico del desarrollo donde los factores de crecimiento neuronal son cruciales para la maduración neurobiológica y desempeñan papeles importantes durante el desarrollo del cerebro participando en la formación de conexiones sinápticas apropiadas en el cerebro (Cohen-Cory et al., 2010). Por lo tanto, estudiaron los efectos conductuales inducidos por EtOH, ED o AMED sobre la locomoción, el aprendizaje y la memoria, así como los cambios electrofisiológicos y moleculares involucrados en la plasticidad sináptica, como la expresión de BDNF y su receptor de tirosina-quinasa trkB en el hipocampo de ratas adolescentes, y en diferentes cohortes, de ratas adultas. Además, también se midieron los niveles plasmáticos de corticosterona para evaluar una posible desregulación a largo plazo del eje hipotalámico-pituitario-suprarrenal inducida por la exposición de adolescentes al consumo excesivo de alcohol a EtOH, ED y AMED.

En resumen, partiendo del supuesto de que el consumo compulsivo de EtOH y DE durante la adolescencia pueden provocar alteraciones cognitivas y conductuales y cambios en la plasticidad del hipocampo que persisten en la edad adulta, era crucial evaluar en profundidad el efecto del consumo excesivo de alcohol en la adolescencia administración de bebida compulsiva de EtOH, ED o AMED en ratas jóvenes y adultas. Nuestros resultados muestran que el consumo de AMED durante el periodo periadolescente produce cambios adaptativos en el hipocampo a nivel electrofisiológico y molecular, asociados a alteraciones del comportamiento, que ya son detectables durante la adolescencia y persisten en la edad adulta. Esta conclusión se ve reforzada por el deterioro duradero de la función cortical prefrontal revelado por el protocolo idéntico de administración compulsiva de AMED de un estudio anterior (Dazzi et al., 2024). En general, el análisis de todo el conjunto de datos obtenidos sugiere fuertemente que la AMED, durante la adolescencia, puede tener resultados que no son necesariamente la suma de los observados con EtOH o ED solos y afectan permanentemente la plasticidad del hipocampo. Sin embargo, debe tenerse en cuenta que la interpretación de estos resultados puede ser limitada teniendo en cuenta las diferencias de sexo. Aunque el análisis de las supuestas diferencias sexuales merece atención, estaba más allá del alcance de este estudio y habría introducido la variable adicional de las fluctuaciones hormonales durante el ciclo estral. Es bien sabido que las hormonas gonadales y sus metabolitos neuroactivos modulan varios sistemas de neurotransmisión implicados en la respuesta al EtOH y contribuyen a las diferencias sexuales en los efectos del alcohol en el sistema nervioso central (Finn, 2023). Por lo tanto, sus fluctuaciones durante el ciclo estral podrían contribuir a una mayor variabilidad y la necesidad de utilizar un mayor número de animales para la experimentación con el fin de tener una evaluación precisa que pueda ser considerada en futuros estudios.

 

 

Referencias Bibliográficas

  • Acquas et al., 2023
    Acquas, L. Dazzi, M. Correa, J.D. Salamone, V. Bassareo
    Editorial: alcohol and energy drinks: is this a really good mix?

Front. Behav. Neurosci., 17 (2023), Article 1213723, 10.3389/fnbeh.2023.1213723
View at publisher
View at publisher
This article is free to access.

View in ScopusGoogle Scholar

  • Albensi et al., 2007
    C. Albensi, D.R. Oliver, J. Toupin, G. Odero
    Electrical stimulation protocols for hippocampal synaptic plasticity and neuronal hyper-excitability: are they effective or relevant?

 

Exp. Neurol., 204 (2007), pp. 1-13, 10.1016/j.expneurol.2006.12.009
View PDFView articleView in ScopusGoogle Scholar

  • Alsunni, 2015
    A. Alsunni
    Energy drink consumption: beneficial and adverse health effects

 

Int. J. Health Sci., 9 (2015), pp. 468-474
View in ScopusGoogle Scholar

  • Angioni et al., 2016
    Angioni, C. Cocco, G.-L. Ferri, A. Argiolas, M.R. Melis, F. Sanna
    Involvement of nigral oxytocin in locomotor activity: a behavioral, immunohistochemical and lesion study in male rats

 

Horm. Behav., 83 (2016), pp. 23-38, 10.1016/j.yhbeh.2016.05.012
View PDFView articleView in ScopusGoogle Scholar

  • Ardais et al., 2014
    P. Ardais, M.F. Borges, A.S. Rocha, C. Sallaberry, R.A. Cunha, L.O. Porciúncula
    Caffeine triggers behavioral and neurochemical alterations in adolescent rats

 

Neuroscience, 270 (2014), pp. 27-39, 10.1016/j.neuroscience.2014.04.003
View PDFView articleView in ScopusGoogle Scholar

  • Arria et al., 2011
    M. Arria, K.M. Caldeira, S.J. Kasperski, K.B. Vincent, R.R. Griffiths, K.E. O’Grady
    Energy drink consumption and increased risk for alcohol dependence: energy drink consumption and increased risk for alcohol dependence

 

Alcohol Clin. Exp. Res., 35 (2011), pp. 365-375, 10.1111/j.1530-0277.2010.01352.x
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Ashby et al., 2021
    M. Ashby, S.B. Floresco, A.G. Phillips, A. McGirr, J.K. Seamans, Y.T. Wang
    LTD is involved in the formation and maintenance of rat hippocampal CA1 place-cell fields

 

Nat. Commun., 12 (2021), p. 100, 10.1038/s41467-020-20317-7
View at publisher
View at publisher
This article is free to access.

View in ScopusGoogle Scholar

  • Avchalumov and Mandyam, 2020
    Avchalumov, C.D. Mandyam
    Synaptic plasticity and its modulation by alcohol

 

BPL, 6 (2020), pp. 103-111, 10.3233/BPL-190089
View at publisher
View at publisher Google Scholar

  • Beaudet et al., 2016
    Beaudet, S. Valable, J. Bourgine, V. Lelong-Boulouard, L. Lanfumey, T. Freret, M. Boulouard, E. Paizanis
    Long-lasting effects of chronic intermittent alcohol exposure in adolescent mice on object recognition and hippocampal neuronal activity

 

Alcohol Clin. Exp. Res., 40 (2016), pp. 2591-2603, 10.1111/acer.13256
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Bekinschtein et al., 2014
    Bekinschtein, M. Cammarota, J.H. Medina
    BDNF and memory processing

 

Neuropharmacology, 76 (2014), pp. 677-683, 10.1016/j.neuropharm.2013.04.024
View PDFView articleView in ScopusGoogle Scholar

  • Benson et al., 2019
    Benson, B. Tiplady, A. Scholey
    Attentional and working memory performance following alcohol and energy drink: a randomised, double-blind, placebo-controlled, factorial design laboratory study

 

PLoS One, 14 (2019), Article e0209239, 10.1371/journal.pone.0209239
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Bertola et al., 2013
    Bertola, S. Mathews, S.H. Ki, H. Wang, B. Gao
    Mouse model of chronic and binge ethanol feeding (the NIAAA model)

 

Nat. Protoc., 8 (2013), pp. 627-637, 10.1038/nprot.2013.032
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Bertoncello et al., 2019
    T. Bertoncello, T.E. Müller, B.D. Fontana, F. Franscescon, G.L.B. Filho, D.B. Rosemberg
    Taurine prevents memory consolidation deficits in a novel alcohol-induced blackout model in zebrafish

 

Prog. Neuro Psychopharmacol. Biol. Psychiatr., 93 (2019), pp. 39-45, 10.1016/j.pnpbp.2019.03.006
View PDFView articleView in ScopusGoogle Scholar

  • Bharatiya et al., 2020
    Bharatiya, J. Bratzu, C. Lobina, G. Corda, C. Cocco, P. De Deurwaerdere, A. Argiolas, M.R. Melis, F. Sanna
    The pesticide fipronil injected into the substantia nigra of male rats decreases striatal dopamine content: a neurochemical, immunohistochemical and behavioral study

 

Behav. Brain Res., 384 (2020), Article 112562, 10.1016/j.bbr.2020.112562
View PDFView articleView in ScopusGoogle Scholar

  • Blaise et al., 2018
    H. Blaise, J.E. Park, N.J. Bellas, T.M. Gitchell, V. Phan
    Caffeine consumption disrupts hippocampal long-term potentiation in freely behaving rats

 

Phys. Rep., 6 (2018), Article e13632, 10.14814/phy2.13632
View at publisher
View at publisher
This article is free to access.

View in ScopusGoogle Scholar

  • Bloom et al., 1982
    Bloom, P. Lad, Q. Pittman, J. Rogers
    Blood alcohol levels in rats: NON-uniform yields from intraperitoneal doses based on body weight

 

Br. J. Pharmacol., 75 (1982), pp. 251-254, 10.1111/j.1476-5381.1982.tb08780.x
View at publisher
View at publisher
This article is free to access.

View in ScopusGoogle Scholar

  • Boero et al., 2018
    Boero, M.G. Pisu, F. Biggio, L. Muredda, G. Carta, S. Banni, E. Paci, P. Follesa, A. Concas, P. Porcu, M. Serra
    Impaired glucocorticoid-mediated HPA axis negative feedback induced by juvenile social isolation in male rats

 

Neuropharmacology, 133 (2018), pp. 242-253, 10.1016/j.neuropharm.2018.01.045
View PDFView articleView in ScopusGoogle Scholar

  • Boi et al., 2022
    Boi, S. Petralla, B. Monti, G. Talani, E. Sanna, M.G. Pisu, G. Calderisi, E. Maciocco, M. Serra, A. Concas, P. Porcu
    Chronic treatment with hormonal contraceptives alters hippocampal BDNF and histone H3 post-translational modifications but not learning and memory in female rats

 

Horm. Behav., 144 (2022), Article 105218, 10.1016/j.yhbeh.2022.105218
View PDFView articleView in ScopusGoogle Scholar

  • Boschen et al., 2015
    E. Boschen, K.J. Criss, V. Palamarchouk, T.L. Roth, A.Y. Klintsova
    Effects of developmental alcohol exposure vs. intubation stress on BDNF and TrkB expression in the hippocampus and frontal cortex of neonatal rats

 

Int. J. Dev. Neurosci., 43 (2015), pp. 16-24, 10.1016/j.ijdevneu.2015.03.008
View PDFView articleView in ScopusGoogle Scholar

  • Brunborg et al., 2022
    S. Brunborg, J. Raninen, J. Burdzovic Andreas
    Energy drinks and alcohol use among adolescents: a longitudinal study

 

Drug Alcohol Depend., 241 (2022), Article 109666, 10.1016/j.drugalcdep.2022.109666
View PDFView articleView in ScopusGoogle Scholar

  • Cadoni and Peana, 2023
    Cadoni, A.T. Peana
    Energy drinks at adolescence: awareness or unawareness?

 

Front. Behav. Neurosci., 17 (2023), Article 1080963, 10.3389/fnbeh.2023.1080963
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Caletti et al., 2015
    Caletti, F.B. Almeida, G. Agnes, M.S. Nin, H.M.T. Barros, R. Gomez
    Antidepressant dose of taurine increases mRNA expression of GABAA receptor α2 subunit and BDNF in the hippocampus of diabetic rats

 

Behav. Brain Res., 283 (2015), pp. 11-15, 10.1016/j.bbr.2015.01.018
View PDFView articleView in ScopusGoogle Scholar

  • Cavoy and Delacour, 1993
    Cavoy, J. Delacour
    Spatial but not object recognition is impaired by aging in rats

 

Physiol. Behav., 53 (1993), pp. 527-530, 10.1016/0031-9384(93)90148-9
View PDFView articleView in ScopusGoogle Scholar

  • Chung et al., 2018
    Chung, K.G. Creswell, R. Bachrach, D.B. Clark, C.S. Martin
    Adolescent binge drinking

 

Alcohol Res, 39 (2018), pp. 5-15
Google Scholar

  • Cohen‐Cory et al., 2010
    Cohen‐Cory, A.H. Kidane, N.J. Shirkey, S. Marshak
    Brain‐derived neurotrophic factor and the development of structural neuronal connectivity

 

Developmental Neurobiology, 70 (2010), pp. 271-288, 10.1002/dneu.20774
View at publisher
View at publisher
This article is free to access.

View in ScopusGoogle Scholar

  • Coleman et al., 2011
    G. Coleman, J. He, J. Lee, M. Styner, F.T. Crews
    Adolescent binge drinking alters adult brain neurotransmitter gene expression, behavior, brain regional volumes, and neurochemistry in mice

 

Alcohol Clin. Exp. Res., 35 (2011), pp. 671-688, 10.1111/j.1530-0277.2010.01385.x
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Coleman et al., 2014
    G. Coleman, W. Liu, I. Oguz, M. Styner, F.T. Crews
    Adolescent binge ethanol treatment alters adult brain regional volumes, cortical extracellular matrix protein and behavioral flexibility

 

Pharmacol. Biochem. Behav., 116 (2014), pp. 142-151, 10.1016/j.pbb.2013.11.021
View PDFView articleView in ScopusGoogle Scholar

  • Connolly and Kingsbury, 2010
    Connolly, T.J. Kingsbury
    Caffeine modulates CREB-dependent gene expression in developing cortical neurons

 

Biochem. Biophys. Res. Commun., 397 (2010), pp. 152-156, 10.1016/j.bbrc.2010.05.054
View PDFView articleView in ScopusGoogle Scholar

  • Costa et al., 2008
    S. Costa, P.H. Botton, S. Mioranzza, D.O. Souza, L.O. Porciúncula
    Caffeine prevents age-associated recognition memory decline and changes brain-derived neurotrophic factor and tirosine kinase receptor (TrkB) content in mice

 

Neuroscience, 153 (2008), pp. 1071-1078, 10.1016/j.neuroscience.2008.03.038
View PDFView articleView in ScopusGoogle Scholar

  • Costa-Valle et al., 2022
    T. Costa-Valle, J.F. Gomes, C.R. De Oliveira, A. Scherer, S.C.W. Franco De Oliveira, S.E. de, R.C.R. Menezes, M.B. Leal, P.R.T. Romão, E. Dallegrave
    Energy drinks and alcohol in a binge drinking protocol in Wistar rats: male and female behavioral and reproductive effects

 

Pharmacol. Biochem. Behav., 221 (2022), Article 173487, 10.1016/j.pbb.2022.173487
View PDFView articleView in ScopusGoogle Scholar

  • Costa-Valle et al., 2018
    T. Costa-Valle, B.D. Tonieto, L. Altknecht, C.D. Cunha, N. Fão, L.V. Cestonaro, G. Göethel, S.C. Garcia, M.B. Leal, E. Dallegrave, M.D. Arbo
    Energy drink and alcohol combination leads to kidney and liver alterations in rats

 

Toxicol. Appl. Pharmacol., 355 (2018), pp. 138-146, 10.1016/j.taap.2018.06.024
View PDFView articleView in ScopusGoogle Scholar

  • Crews et al., 2007
    Crews, J. He, C. Hodge
    Adolescent cortical development: a critical period of vulnerability for addiction

 

Pharmacol. Biochem. Behav., 86 (2007), pp. 189-199, 10.1016/j.pbb.2006.12.001
View PDFView articleView in ScopusGoogle Scholar

  • Cutuli and Sampedro-Piquero, 2022
    Cutuli, P. Sampedro-Piquero
    BDNF and its role in the alcohol abuse initiated during early adolescence: evidence from preclinical and clinical studies

 

Curr. Neuropharmacol., 20 (2022), pp. 2202-2220, 10.2174/1570159X20666220624111855
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Dahl, 2004
    E. Dahl
    Adolescent brain development: a Period of vulnerabilities and opportunities. Keynote address

 

Ann. N. Y. Acad. Sci., 1021 (2004), pp. 1-22, 10.1196/annals.1308.001
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Davis, 2008
    I. Davis
    Ethanol–BDNF interactions: still more questions than answers

 

Pharmacol. Ther., 118 (2008), pp. 36-57, 10.1016/j.pharmthera.2008.01.003
View PDFView articleView in ScopusGoogle Scholar

  • Dazzi et al., 2024
    Dazzi, F. Sanna, G. Talani, V. Bassareo, F. Biggio, P. Follesa, M.G. Pisu, P. Porcu, R. Puliga, M. Quartu, M. Serra, M.P. Serra, E. Sanna, E. Acquas
    Binge-like administration of alcohol mixed to energy drinks to male adolescent rats severely impacts on mesocortical dopaminergic function in adulthood: a behavioral, neurochemical and electrophysiological study

 

Neuropharmacology, 243 (2024), Article 109786, 10.1016/j.neuropharm.2023.109786
View PDFView articleView in ScopusGoogle Scholar

  • De Giorgi et al., 2022
    De Giorgi, F. Valeriani, F. Gallè, F. Ubaldi, A. Bargellini, C. Napoli, G. Liguori, V. Romano Spica, M. Vitali, C. Protano
    Alcohol mixed with energy drinks (AmED) use among university students: a systematic review and meta-analysis

 

Nutrients, 14 (2022), p. 4985, 10.3390/nu14234985
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Diógenes et al., 2007
    J. Diógenes, N. Assaife-Lopes, A. Pinto-Duarte, J.A. Ribeiro, A.M. Sebastião
    Influence of age on BDNF modulation of hippocampal synaptic transmission: interplay with adenosine A2A receptors

 

Hippocampus, 17 (2007), pp. 577-585, 10.1002/hipo.20294
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Diógenes et al., 2011
    J. Diógenes, A.R. Costenla, L.V. Lopes, A. Jerónimo-Santos, V.C. Sousa, B.M. Fontinha, J.A. Ribeiro, A.M. Sebastião
    Enhancement of LTP in aged rats is dependent on endogenous BDNF

 

Neuropsychopharmacology, 36 (2011), pp. 1823-1836, 10.1038/npp.2011.64
View at publisher
View at publisher
This article is free to access.

View in ScopusGoogle Scholar

  • Eckardt et al., 1998
    J. Eckardt, S.E. File, G.L. Gessa, K.A. Grant, C. Guerri, P.L. Hoffman, H. Kalant, G.F. Koob, T.-K. Li, B. Tabakoff
    Effects of moderate alcohol consumption on the central nervous system

 

Alcohol Clin. Exp. Res., 22 (1998), pp. 998-1040, 10.1111/j.1530-0277.1998.tb03695.x
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Ferreira et al., 2004
    Ferreira, I. Hartmannquadros, A. Trindade, S. Takahashi, R. Koyama, M. Souzaformigoni
    Can energy drinks reduce the depressor effect of ethanol? An experimental study in mice

 

Physiol. Behav., 82 (2004), pp. 841-847, 10.1016/S0031-9384(04)00284-7
View PDFView articleView in ScopusGoogle Scholar

  • Ferreira et al., 2006
    E. Ferreira, M.T. De Mello, S. Pompeia, M.L.O. De Souza-Formigoni
    Effects of energy drink ingestion on alcohol intoxication

 

Alcohol Clin. Exp. Res., 30 (2006), pp. 598-605, 10.1111/j.1530-0277.2006.00070.x
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Finn, 2023
    A. Finn
    Stress and gonadal steroid influences on alcohol drinking and withdrawal, with focus on animal models in females

 

Front. Neuroendocrinol., 71 (2023), Article 101094, 10.1016/j.yfrne.2023.101094
View PDFView articleView in ScopusGoogle Scholar

  • Fritz et al., 2014
    M. Fritz, M. Companion, S.L. Boehm
    “Wired,” yet intoxicated: modeling binge caffeine and alcohol Co-consumption in the mouse

 

Alcohol Clin. Exp. Res., 38 (2014), pp. 2269-2278, 10.1111/acer.12472
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Gallagher et al., 1993
    Gallagher, R. Burwell, M.R. Burchinal
    Severity of spatial learning impairment in aging: development of a learning index for performance in the Morris water maze

 

Behav. Neurosci., 107 (1993), pp. 618-626, 10.1037/0735-7044.107.4.618
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Ghandforoush-Sattari et al., 2010
    Ghandforoush-Sattari, S. Mashayekhi, C.V. Krishna, J.P. Thompson, P.A. Routledge
    Pharmacokinetics of oral taurine in healthy volunteers

 

J. Amino Acids (2010), pp. 1-5, 10.4061/2010/346237
2010
View at publisher
View at publisher
This article is free to access.

Google Scholar

  • Gutierrez and Sher, 2015
    Gutierrez, L. Sher
    Alcohol and drug use among adolescents: an educational overview

 

Int. J. Adolesc. Med. Health, 27 (2015), pp. 207-212, 10.1515/ijamh-2015-5013
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Han et al., 2013
    Han, N. Jia, J. Li, L. Yang, L.-Q. Min
    Chronic caffeine treatment reverses memory impairment and the expression of brain BNDF and TrkB in the PS1/APP double transgenic mouse model of Alzheimer’s disease

 

Mol. Med. Rep., 8 (2013), pp. 737-740, 10.3892/mmr.2013.1601
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Hawkins et al., 1992
    D. Hawkins, R.F. Catalano, J.Y. Miller
    Risk and protective factors for alcohol and other drug problems in adolescence and early adulthood: implications for substance abuse prevention

 

Psychol. Bull., 112 (1992), pp. 64-105, 10.1037/0033-2909.112.1.64
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Hill et al., 2000
    G. Hill, H.R. White, I.J. Chung, J.D. Hawkins, R.F. Catalano
    Early adult outcomes of adolescent binge drinking: person- and variable-centered analyses of binge drinking trajectories

 

Alcohol Clin. Exp. Res., 24 (2000), pp. 892-901
View in ScopusGoogle Scholar

  • Hsu et al., 2009
    W. Hsu, C.Y. Chen, C.-S. Wang, T.H. Chiu
    Caffeine and a selective adenosine A2A receptor antagonist induce reward and sensitization behavior associated with increased phospho-Thr75-DARPP-32 in mice

 

Psychopharmacology, 204 (2009), pp. 313-325, 10.1007/s00213-009-1461-3
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Jeanblanc et al., 2019
    Jeanblanc, B. Rolland, F. Gierski, M.P. Martinetti, M. Naassila
    Animal models of binge drinking, current challenges to improve face validity

 

Neurosci. Biobehav. Rev., 106 (2019), pp. 112-121, 10.1016/j.neubiorev.2018.05.002
View PDFView articleView in ScopusGoogle Scholar

  • Kalant, 1975
    Kalant
    Direct effects of ethanol on the nervous system

 

Fed. Proc., 34 (1975), pp. 1930-1941
View in ScopusGoogle Scholar

  • Klein et al., 1989
    Klein, L.F. Parada, F. Coulier, M. Barbacid
    trkB, a novel tyrosine protein kinase receptor expressed during mouse neural development

 

EMBO J., 8 (1989), pp. 3701-3709, 10.1002/j.1460-2075.1989.tb08545.x
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Lees et al., 2020
    Lees, L.R. Meredith, A.E. Kirkland, B.E. Bryant, L.M. Squeglia
    Effect of alcohol use on the adolescent brain and behavior

 

Pharmacol. Biochem. Behav., 192 (2020), Article 172906, 10.1016/j.pbb.2020.172906
View PDFView articleView in ScopusGoogle Scholar

  • Liang et al., 2007
    Liang, A. Suryanarayanan, A. Abriam, B. Snyder, R.W. Olsen, I. Spigelman
    Mechanisms of reversible GABA A receptor plasticity after ethanol intoxication

 

J. Neurosci., 27 (2007), pp. 12367-12377, 10.1523/JNEUROSCI.2786-07.2007
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Livak and Schmittgen, 2001
    J. Livak, T.D. Schmittgen
    Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method

 

Methods, 25 (2001), pp. 402-408, 10.1006/meth.2001.1262
View PDFView articleGoogle Scholar

  • Livy et al., 2003
    J. Livy, S.E. Parnell, J.R. West
    Blood ethanol concentration profiles: a comparison between rats and mice

 

Alcohol, 29 (2003), pp. 165-171, 10.1016/S0741-8329(03)00025-9
View PDFView articleView in ScopusGoogle Scholar

  • Lowry et al., 1951
    H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall
    Protein measurement with the Folin phenol reagent

 

J. Biol. Chem., 193 (1951), pp. 265-275
View PDFView articleView in ScopusGoogle Scholar

  • Lubman et al., 2007
    I. Lubman, M. Yücel, W.D. Hall
    Substance use and the adolescent brain: a toxic combination?

 

J. Psychopharmacol., 21 (2007), pp. 792-794, 10.1177/0269881107078309
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Mahoney et al., 2019
    R. Mahoney, G.E. Giles, B.P. Marriott, D.A. Judelson, E.L. Glickman, P.J. Geiselman, H.R. Lieberman
    Intake of caffeine from all sources and reasons for use by college students

 

Clin. Nutr., 38 (2019), pp. 668-675, 10.1016/j.clnu.2018.04.004
View PDFView articleView in ScopusGoogle Scholar

  • Marczinski et al., 2012
    A. Marczinski, M.T. Fillmore, A.L. Henges, M.A. Ramsey, C.R. Young
    Effects of energy drinks mixed with alcohol on information processing, motor coordination and subjective reports of intoxication

 

Exp. Clin. Psychopharmacol, 20 (2012), pp. 129-138, 10.1037/a0026136
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Martín and Buño, 2003
    D. Martín, W. Buño
    Caffeine-Mediated presynaptic long-term potentiation in hippocampal CA1 pyramidal neurons

 

J. Neurophysiol., 89 (2003), pp. 3029-3038, 10.1152/jn.00601.2002
View at publisher
View at publisher
This article is free to access.

View in ScopusGoogle Scholar

  • Mioranzza et al., 2014
    Mioranzza, F. Nunes, D.M. Marques, G.T. Fioreze, A.S. Rocha, P.H.S. Botton, M.S. Costa, L.O. Porciúncula
    Prenatal caffeine intake differently affects synaptic proteins during fetal brain development

 

Int. J. Dev. Neurosci., 36 (2014), pp. 45-52, 10.1016/j.ijdevneu.2014.04.006
View PDFView articleView in ScopusGoogle Scholar

  • Miranda et al., 2019
    Miranda, J.F. Morici, M.B. Zanoni, P. Bekinschtein
    Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain

 

Front. Cell. Neurosci., 13 (2019), p. 363, 10.3389/fncel.2019.00363
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Mokdad et al., 2016
    H. Mokdad, M.H. Forouzanfar, F. Daoud, A.A. Mokdad, C. El Bcheraoui, M. Moradi-Lakeh, H.H. Kyu, R.M. Barber, J. Wagner, K. Cercy, H. Kravitz, M. Coggeshall, A. Chew, K.F. O’Rourke, C. Steiner, M. Tuffaha, R. Charara, E.A. Al-Ghamdi, Y. Adi, R.A. Afifi, H. Alahmadi, F. AlBuhairan, N. Allen, M. AlMazroa, A.A. Al-Nehmi, Z. AlRayess, M. Arora, P. Azzopardi, C. Barroso, M. Basulaiman, Z.A. Bhutta, C. Bonell, C. Breinbauer, L. Degenhardt, D. Denno, J. Fang, A. Fatusi, A.B. Feigl, R. Kakuma, N. Karam, E. Kennedy, T.A.M. Khoja, F. Maalouf, C.M. Obermeyer, A. Mattoo, T. McGovern, Z.A. Memish, G.A. Mensah, V. Patel, S. Petroni, N. Reavley, D.R. Zertuche, M. Saeedi, J. Santelli, S.M. Sawyer, F. Ssewamala, K. Taiwo, M. Tantawy, R.M. Viner, J. Waldfogel, M.P. Zuñiga, M. Naghavi, H. Wang, T. Vos, A.D. Lopez, A.A. Al Rabeeah, G.C. Patton, C.J.L. Murray
    Global burden of diseases, injuries, and risk factors for young people’s health during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013

 

Lancet, 387 (2016), pp. 2383-2401, 10.1016/S0140-6736(16)00648-6
View PDFView articleView in ScopusGoogle Scholar

  • O’Brien et al., 2008
    C. O’Brien, T.P. McCoy, S.D. Rhodes, A. Wagoner, M. Wolfson
    Caffeinated cocktails: energy drink consumption, high-risk drinking, and alcohol-related consequences among college students

 

Acad. Emerg. Med., 15 (2008), pp. 453-460, 10.1111/j.1553-2712.2008.00085.x
View at publisher
View at publisher
This article is free to access.

View in ScopusGoogle Scholar

  • Peacock et al., 2012
    Peacock, R. Bruno, F.H. Martin
    The subjective physiological, psychological, and behavioral risk-taking consequences of alcohol and energy drink Co-ingestion

 

Alcohol Clin. Exp. Res., 36 (2012), pp. 2008-2015, 10.1111/j.1530-0277.2012.01820.x
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Petribu et al., 2023
    N. Petribu, K.P. Abrahao, M.L.O. Souza-Formigoni
    Ethanol combined with energy drinks: two decades of research in rodents

 

Front. Behav. Neurosci., 16 (2023), Article 1100608, 10.3389/fnbeh.2022.1100608
View at publisher
View at publisher Google Scholar

  • Pisu et al., 2019
    G. Pisu, G. Boero, A. Garau, C. Casula, S. Cisci, F. Biggio, A. Concas, P. Follesa, E. Maciocco, P. Porcu, M. Serra
    Are preconceptional stressful experiences crucial elements for the aetiology of autism spectrum disorder? Insights from an animal model

 

Neuropharmacology, 157 (2019), Article 107686, 10.1016/j.neuropharm.2019.107686
View PDFView articleGoogle Scholar

  • Riesselmann et al., 1996
    Riesselmann, F. Rosenbaum, V. Schneider
    [Alcohol and energy drink–can combined consumption of both beverages modify automobile driving fitness?]

 

Blutalkohol, 33 (1996), pp. 201-208
View in ScopusGoogle Scholar

  • Roemer and Stockwell, 2017
    Roemer, T. Stockwell
    Alcohol mixed with energy drinks and risk of injury: a systematic review

 

J. Stud. Alcohol Drugs, 78 (2017), pp. 175-183, 10.15288/jsad.2017.78.175
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Rosenthal et al., 1991
    Rosenthal, D.V. Goeddel, T. Nguyen, E. Martin, L.E. Burton, A. Shih, G.R. Laramee, F. Wurm, A. Mason, K. Nikolics, J.W. Winslow
    Primary structure and biological activity of human brain-derived neurotrophic factor

 

Endocrinology, 129 (1991), pp. 1289-1294, 10.1210/endo-129-3-1289
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Ryu and Roh, 2019
    -Y. Ryu, J. Roh
    The effects of high peripubertal caffeine exposure on the adrenal gland in immature male and female rats

 

Nutrients, 11 (2019), p. 951, 10.3390/nu11050951
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Sajid et al., 2017
    Sajid, S. Ahmad, S. Emad, Z. Batool, S. Khaliq, L. Anis, S. Tabassum, S. Madiha, L. Liaquat, S. Sadir, T. Perveen, S. Haider
    Enhanced physical endurance and improved memory performance following taurine administration in rats

 

Pak. J. Pharm. Sci., 30 (2017), pp. 1957-1963
View in ScopusGoogle Scholar

  • Sallaberry et al., 2013
    Sallaberry, F. Nunes, M.S. Costa, G.T. Fioreze, A.P. Ardais, P.H.S. Botton, B. Klaudat, T. Forte, D.O. Souza, E. Elisabetsky, L.O. Porciúncula
    Chronic caffeine prevents changes in inhibitory avoidance memory and hippocampal BDNF immunocontent in middle-aged rats

 

Neuropharmacology, 64 (2013), pp. 153-159, 10.1016/j.neuropharm.2012.07.010
View PDFView articleView in ScopusGoogle Scholar

  • Sanna et al., 2011
    Sanna, G. Talani, N. Obili, M.P. Mascia, M.C. Mostallino, P.P. Secci, M.G. Pisu, F. Biggio, C. Utzeri, P. Olla, G. Biggio, P. Follesa
    Voluntary ethanol consumption induced by social isolation reverses the increase of α4/δ GABAA receptor gene expression and function in the Hippocampus of C57BL/6J mice

 

Front. Neurosci., 5 (2011), 10.3389/fnins.2011.00015
View at publisher
View at publisher Google Scholar

  • Sayed, 2021
    M. Sayed
    Quercetin alleviates red Bull energy drink-induced cerebral cortex neurotoxicity via modulation of Nrf2 and HO-1

 

Oxid. Med. Cell. Longev., 2021 (2021), pp. 1-13, 10.1155/2021/9482529
View at publisher
View at publisher
This article is free to access.

Google Scholar

  • Scheidt et al., 2015
    Scheidt, G.R. Fries, L. Stertz, J.C.C. Cabral, F. Kapczinski, R.M.M.D. Almeida
    Ethanol during adolescence decreased the BDNF levels in the hippocampus in adult male Wistar rats, but did not alter aggressive and anxiety-like behaviors

 

Trends Psychiatry Psychother, 37 (2015), pp. 143-151, 10.1590/2237-6089-2015-0017
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Schwartz et al., 2015
    L. Schwartz, K. Gilstad-Hayden, A. Carroll-Scott, S.A. Grilo, C. McCaslin, M. Schwartz, J.R. Ickovics
    Energy drinks and youth self-reported hyperactivity/inattention symptoms

 

Academic Pediatrics, 15 (2015), pp. 297-304, 10.1016/j.acap.2014.11.006
View PDFView articleView in ScopusGoogle Scholar

  • Seemiller and Gould, 2020
    R. Seemiller, T.J. Gould
    The effects of adolescent alcohol exposure on learning and related neurobiology in humans and rodents

 

Neurobiol. Learn. Mem., 172 (2020), Article 107234, 10.1016/j.nlm.2020.107234
View PDFView articleView in ScopusGoogle Scholar

  • Sefen et al., 2022
    A.N. Sefen, J.D. Patil, H. Cooper
    The implications of alcohol mixed with energy drinks from medical and socio-legal standpoints

 

Front. Behav. Neurosci., 16 (2022), Article 968889, 10.3389/fnbeh.2022.968889
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Shojaei et al., 2015
    Shojaei, S. Ghavami, M. Panjehshahin, A. Owji
    Effects of ethanol on the expression level of various BDNF mRNA isoforms and their encoded protein in the Hippocampus of adult and embryonic rats

 

IJMS, 16 (2015), pp. 30422-30437, 10.3390/ijms161226242
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Smit and Rogers, 2000
    J. Smit, P.J. Rogers
    Effects of low doses of caffeine on cognitive performance, mood and thirst in low and higher caffeine consumers

 

Psychopharmacology, 152 (2000), pp. 167-173, 10.1007/s002130000506
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Smith et al., 2004
    Smith, Y. Ruderman, Q. Huagong, M. Gulinello
    Effects of a low dose of ethanol in an animal model of premenstrual anxiety

 

Alcohol, 33 (2004), pp. 41-49, 10.1016/S0741-8329(04)00079-5
View PDFView articleView in ScopusGoogle Scholar

  • Spear, 2018
    P. Spear
    Effects of adolescent alcohol consumption on the brain and behaviour

 

Nat. Rev. Neurosci., 19 (2018), pp. 197-214, 10.1038/nrn.2018.10
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Spear, 2000
    P. Spear
    The adolescent brain and age-related behavioral manifestations

 

Neurosci. Biobehav. Rev., 24 (2000), pp. 417-463, 10.1016/S0149-7634(00)00014-2
View PDFView articleView in ScopusGoogle Scholar

  • Specterman et al., 2005
    Specterman, A. Bhuiya, A. Kuppuswamy, P. Strutton, M. Catley, N. Davey
    The effect of an energy drink containing glucose and caffeine on human corticospinal excitability

 

Physiol. Behav., 83 (2005), pp. 723-728, 10.1016/j.physbeh.2004.09.008
View PDFView articleView in ScopusGoogle Scholar

  • Takahashi et al., 2015
    T. Takahashi, L.F. Vendruscolo, R.N. Takahashi
    Binge-like ingestion of a combination of an energy drink and alcohol leads to cognitive deficits and motivational changes

 

Pharmacol. Biochem. Behav., 136 (2015), pp. 82-86, 10.1016/j.pbb.2015.07.007
View PDFView articleView in ScopusGoogle Scholar

  • Talani et al., 2016
    Talani, F. Biggio, V. Licheri, V. Locci, G. Biggio, E. Sanna
    Isolation rearing reduces neuronal excitability in dentate gyrus granule cells of adolescent C57BL/6J mice: role of GABAergic tonic currents and neurosteroids

 

Front. Cell. Neurosci., 10 (2016), 10.3389/fncel.2016.00158
View at publisher
View at publisher Google Scholar

  • Talani et al., 2011
    Talani, G. Biggio, E. Sanna
    Enhanced sensitivity to ethanol-induced inhibition of LTP in CA1 pyramidal neurons of socially isolated C57BL/6J mice: role of neurosteroids

 

Front. Endocrinol., 2 (2011), 10.3389/fendo.2011.00056
View at publisher
View at publisher Google Scholar

  • Thombs et al., 2011
    Thombs, M. Rossheim, T.E. Barnett, R.M. Weiler, M.D. Moorhouse, B.N. Coleman
    Is there a misplaced focus on AmED? Associations between caffeine mixers and bar patron intoxication

 

Drug Alcohol Depend., 116 (2011), pp. 31-36, 10.1016/j.drugalcdep.2010.11.014
View PDFView articleView in ScopusGoogle Scholar

  • Toumbourou et al., 2019
    W. Toumbourou, B. Rowland, J. Williams, R. Smith, G.C. Patton
    Community intervention to prevent adolescent health behavior problems: evaluation of communities that care in Australia

 

Health Psychol., 38 (2019), pp. 536-544, 10.1037/hea0000735
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Vargiu et al., 2021
    Vargiu, F. Broccia, C. Lobina, D. Lecca, A. Capra, P.P. Bassareo, V. Bassareo
    Chronic red Bull consumption during adolescence: effect on mesocortical and mesolimbic dopamine transmission and cardiovascular system in adult rats

 

Pharmaceuticals, 14 (2021), p. 609, 10.3390/ph14070609
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Vercammen et al., 2019
    A. Vercammen, J.W. Koma, S.N. Bleich
    Trends in energy drink consumption among U.S. Adolescents and adults, 2003–2016

 

Am. J. Prev. Med., 56 (2019), pp. 827-833, 10.1016/j.amepre.2018.12.007
View PDFView articleView in ScopusGoogle Scholar

  • Verster et al., 2012
    Verster, C. Aufricht, C. Alford
    Energy drinks mixed with alcohol: misconceptions, myths, and facts

 

Int. J. Graph Multimed., 187 (2012), 10.2147/IJGM.S29313
View at publisher
View at publisher Google Scholar

  • Verster et al., 2015
    C. Verster, J.M.E. Benjaminsen, J.H.M. Van Lanen, N.M.D. Van Stavel, B. Olivier
    Effects of mixing alcohol with energy drink on objective and subjective intoxication: results from a Dutch on-premise study

 

Psychopharmacology, 232 (2015), pp. 835-842, 10.1007/s00213-014-3715-y
View at publisher
View at publisher
This article is free to access.

View in ScopusGoogle Scholar

  • Vetreno and Crews, 2012
    P. Vetreno, F.T. Crews
    Adolescent binge drinking increases expression of the danger signal receptor agonist HMGB1 and toll-like receptors in the adult prefrontal cortex

 

Neuroscience, 226 (2012), pp. 475-488, 10.1016/j.neuroscience.2012.08.046
View PDFView articleView in ScopusGoogle Scholar

  • Wesnes et al., 2017
    A. Wesnes, H. Brooker, A.W. Watson, W. Bal, E. Okello
    Effects of the Red Bull energy drink on cognitive function and mood in healthy young volunteers

 

J. Psychopharmacol., 31 (2017), pp. 211-221, 10.1177/0269881116681459
View at publisher
View at publisher View in ScopusGoogle Scholar

  • White et al., 2016
    R. White, J.M. Padowski, Y. Zhong, G. Chen, S. Luo, P. Lazarus, M.E. Layton, S. McPherson
    Pharmacokinetic analysis and comparison of caffeine administered rapidly or slowly in coffee chilled or hot versus chilled energy drink in healthy young adults

 

Clin. Toxicol., 54 (2016), pp. 308-312, 10.3109/15563650.2016.1146740
View at publisher
View at publisher
This article is free to access.

View in ScopusGoogle Scholar

  • Yasuma et al., 2021
    Yasuma, K. Imamura, K. Watanabe, D. Nishi, N. Kawakami, A. Takano
    Association between energy drink consumption and substance use in adolescence: a systematic review of prospective cohort studies

 

Drug Alcohol Depend., 219 (2021), Article 108470, 10.1016/j.drugalcdep.2020.108470
View PDFView articleView in ScopusGoogle Scholar

  • You and Lu, 2023
    You, B. Lu
    Diverse functions of multiple Bdnf transcripts driven by distinct Bdnf promoters

 

Biomolecules, 13 (2023), p. 655, 10.3390/biom13040655
View at publisher
View at publisher View in ScopusGoogle Scholar

  • Zhang and Madan, 2021
    -C. Zhang, C.R. Madan
    How does caffeine influence memory? Drug, experimental, and demographic factors

 

Neurosci. Biobehav. Rev., 131 (2021), pp. 525-538, 10.1016/j.neubiorev.2021.09.033